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Abstract
The spin-wave and exchange-enhanced spin-density fluctuation contributions
to the electrical resistivity, ρ(T ), of weak itinerant-electron ferromagnets are
calculated in the absence and presence of the magnetic field, H , employing
the two-band (s- and d-band) model and the version of spin-fluctuation theory
for d-band that makes use of the Ginzburg–Landau formalism. These self-
consistent calculations (i) mark a substantial improvement over the previous
theoretical treatments in that they completely dispense with the unrealistic
electron-gas approximation, (ii) account for the effect of H on the contributions
to ρ(T ) arising from spin waves (spin-density fluctuations) at low temperatures
(at intermediate temperatures and for temperatures close to the Curie point,
TC), and (iii) regardless of the nature of the low-lying magnetic excitations that
dominantly contribute to the negative magnetoresistance, �ρ/ρ, in different
temperature ranges, yield analytical expressions that basically have a simple
general form (�ρ/ρ) = 1 − [ρ(T, H )/ρ(T, H = 0)] ∼= a H − bH 2. The
expressions, so obtained, not only permit a quantitative determination of the
suppression of spin waves and spin fluctuations by the magnetic field, H , in
weakly ferromagnetic metals from the magnetoresistance data but are also
capable of yielding useful information about the band structure.

1. Introduction

The theoretical formalisms [1–11] that make an adequate provision for the collective nature
of electron–hole pair excitations (i.e., non-propagating spin fluctuations) go far beyond the
mean-field treatment of the Stoner–Wohlfarth model [12] in that they provide straightforward
explanations for the attributes of weak itinerant-electron (WI) ferromagnets that the Stoner–
Wohlfarth model failed to account for (for details and a comprehensive reference to the relevant
literature, see [13]). Most of these theories deal with the spin-fluctuation contribution to various
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thermodynamic properties of WI ferromagnets and only a few of them [1, 6, 8, 11] address the
important issue of the suppression of spin fluctuations by the external magnetic field (Hext).
The latter class of theories [1, 6, 8] makes use of the electron gas model to calculate a field-
and temperature-dependent static susceptibility that is consistent with the one deduced from
the magnetic equation of state. Such an approach cannot be regarded as satisfactory for the
following reasons. First, the electron gas model forms an oversimplified description of the band
structure of real WI magnetic systems. Second, a number of adjustable parameters [1, 6, 8] have
been used to arrive at a quantitative agreement with the experiment. Third, the sole theoretical
attempt [6] to calculate the magnetoresistance of weakly and nearly ferromagnetic metals
completely neglects the spin-wave contribution (which almost completely accounts for [14]
the temperature dependence of magnetization observed in Ni3Al at low temperatures and whose
overwhelming presence in Ni3Al is well documented [15] from neutron scattering experiments)
and exclusively deals with the spin-fluctuation contribution only at low temperatures.

To partly remedy this situation, the present author has recently reported [13] the results of
an explicit self-consistent calculation of the zero-point and thermally excited spin-fluctuation
contributions to magnetization in WI ferromagnets in the presence and absence of an external
magnetic field, based on the version of spin-fluctuation theory that makes use of the Ginzburg–
Landau formalism. These results revealed the following.

(i) The zero-point spin fluctuations have a major share in renormalizing the Landau
coefficients of the Stoner theory, are essentially insensitive to Hext, and make a small
but significant contribution to the temperature dependence of magnetization in WI
ferromagnets, particularly at intermediate temperatures.

(ii) By contrast, the thermally excited spin fluctuations (propagating transverse spin
fluctuations, i.e., spin waves, at low temperatures and non-propagating longitudinal as
well as transverse spin fluctuations at intermediate temperatures and for temperatures
close to the Curie point, TC) almost entirely account for the dependences of magnetization
on temperature and field, and get strongly suppressed by Hext.

(iii) The suppression of thermally excited fluctuations by Hext for temperatures just outside
the critical region but below TC should follow the (Hext)

1/2 power law.

Subsequently, these theoretical predictions have been validated [14, 16] by the results of high-
resolution magnetization measurements on the WI ferromagnets Ni3Al and Ni75−x Fex Al25.
The success of the above theoretical approach [13] in correctly describing the experimental
results on magnetization has motivated the author to extend this formalism to calculate the
spin-wave and spin-fluctuation contributions to magnetoresistance in WI ferromagnets.

In the following section, the two-band (s- and d-band) model and the version of spin-
fluctuation theory for the d-band electrons that is based on the Ginzburg–Landau formalism are
used to calculate the contributions to the electrical resistivity, ρ(T ), of weak itinerant-electron
(WI) ferromagnets arising from the propagating transverse spin fluctuations (spin waves) at low
temperatures and correlated electron–hole pair collective excitations (exchange-enhanced non-
propagating longitudinal and transverse spin-density fluctuations) at intermediate temperatures
and for temperatures close to the Curie point, TC, in the absence and presence of the
magnetic field, H . Although the starting point (equation (1) of section 2) of the present self-
consistent calculations is the same as that of the previous ones [5, 6, 17], these calculations
go far beyond the earlier theoretical approaches [1, 5, 6, 8] in completely dispensing with
the electron-gas approximation and in accounting for the effect of magnetic field on the
contributions to resistivity arising from spin waves (SWs) at low temperatures and spin-
density fluctuations (SFs) at intermediate temperatures and for temperatures close to TC.
Another important feature of these calculations is that they yield expressions for the SW
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and SF contributions to negative magnetoresistance,�ρ/ρ, in WI ferromagnets that permit a
quantitative determination of the suppression of spin waves and spin-density fluctuations by
the magnetic field, H , in weakly ferromagnetic metals from the magnetoresistance data and
have the potential of yielding useful information about the band structure. In the appendix, the
classical approximation is used in conjunction with the temperature- and field-dependent spin-
wave cut-off wavevector to calculate the spin-wave contributions to negative magnetoresistance
and the ‘in-field’ magnetization of WI ferromagnets. The resulting expressions not only
reproduce the experimentally observed H 1/2 law for the suppression of spin waves by H , as
evidenced in the ‘in-field’ magnetization at low temperatures and moderate fields, in such
systems but also the field variations of the magnetoresistance predicted by more accurate
theoretical expressions derived in the following section. The H 1/2 law is already well
established in the case of localized-moment ferromagnets.

2. Electrical resistivity and magnetoresistance

Within the framework of the two-band (s- and d-band) model, a standard theoretical
treatment [6, 17, 18] of the scattering of conduction (s) electrons by the spin-density fluctuations
of the d-electrons via the s–d exchange interaction yields the following expression for the
electrical resistivity:

ρ(T ) = 3

4

( m

ne2

)
�2

s−d

(
E s

F

h̄

)
N(E s

F)N(E
d
F )

(
kd

F

ks
F

)4 (
Ed

F

E s
F

)
r(T ) (1)

with

r(T ) = 1

T

∫ 2ks
F/kd

F

0
dq q3

∫ ∞

−∞
dωωn(ω) [n(ω) + 1] Imχr (q, ω) (2)

n(ω) = [
exp(ω/T )− 1

]−1
(3)

χr (q, ω) = [
χ‖(q, ω) + 2χ⊥(q, ω)

]
/3 (4)

Imχν(q, ω) = ωχν(q)
�ν(q)

ω2 + �2
ν (q)

(5)

χν(q) = χν(q, ω = 0) = χν(0)
κ2
ν

κ2
ν + q2

(6)

�ν(q) = γνqχ
−1
ν (q) = �νq(κ

2
ν + q2) (7)

χν(0) = χν(q = 0) = (cνκ
2
ν )

−1 (8)

�ν = cνγν. (9)

In the above expressions, m and n are the effective mass and number density of the s-electrons,
respectively, E s

F(E
d
F ) is the Fermi energy of the s(d)-band measured from the bottom of the band,

ks
F(k

d
F) and N(E s

F)(N(E
d
F )) respectively are the Fermi wavevector and the density of states at

the Fermi energy per spin per atom of the s(d)-band,�s−d is the s–d exchange coupling constant,
n(ω) is the Bose function, χ‖(q, ω) and χ⊥(q, ω) are the dynamical wavevector-dependent
longitudinal and transverse susceptibilities [10, 13], �ν(q) is the relaxation frequency of
a spontaneous spin fluctuation of wavevector q and polarization ν (ν ≡ ‖ or ⊥) [10, 13],
χν(0) ≡ χν(T, H ) is the field- and temperature-dependent susceptibility, cν is the coefficient
of the gradient term in the Ginzburg–Landau expansion [10], and the quantity γν depends on
the shape of the density of states (DOS) curve near Ed

F [10]. The temperature dependence
of resistivity is completely accounted for by the dimensionless quantity r(T ), which, for the
sake of convenience, is expressed in reduced units ω ≡ h̄ω/Ed

F , T ≡ kBT/Ed
F , q ≡ q/kd

F,
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κν ≡ κν/kd
F , �ν(q) ≡ h̄�ν(q)/Ed

F , cν ≡ cν(kd
F)

2, γν ≡ h̄γνkd
F/Ed

F , and �ν ≡ h̄cνγν(kd
F)

3/Ed
F .

Note that χ‖(q, ω) = χ⊥(q, ω) in the paramagnetic phase (i.e., for T > TC) but the
dynamical wavevector-dependent longitudinal and transverse susceptibilities are not equal
in the ferromagnetic phase (i.e., for T > TC).

2.1. Thermally excited spin fluctuations

2.1.1. Low temperatures. Theoretical calculations [1] of the energy dispersion, E(q), of
magnetic excitations in a weakly ferromagnetic metal reveal the following. At T = 0,

(i) spin-wave excitations, representing the bound states for electron–hole pairs, are confined
to a small region around q = 0 in the Brillouin zone; for values of q close to zero, these
states have lower energy and are separated by an energy gap from the energy continuum,
corresponding to the Stoner single-particle spin-flip excitations.

(ii) This energy gap reduces as q increases so much so that beyond a certain threshold value
of q = q0, the spin-wave dispersion curve enters the Stoner excitation continuum with
the result that propagating transverse spin fluctuations (spin waves) get damped.

For q > q0, the magnetic excitations in the continuum are the overdamped (non-propagating)
modes of exchange-enhanced longitudinal and transverse spin-density fluctuations. Since
spin-wave modes of larger and larger q are excited as the temperature is raised from T = 0,
the transition at q = q0 from well-defined spin waves to non-propagating exchange-enhanced
transverse spin fluctuations manifests itself at a certain finite value of temperature in the
measurement of thermodynamic quantities such as magnetization, electrical/thermal resistivity,
and specific heat. By contrast, the thermally excited non-propagating exchange-enhanced
longitudinal spin-density fluctuations persist down to q = 0 and coexist with, but are swamped
by, spin waves for q � q0.

At low temperatures (T � TC), the main contribution toρ(T) arises from long-wavelength
(q � q0) low-frequency spin-wave (SW) modes. This contribution is obtained by inserting the
following expression [10, 13] for Imχr (q, ω) in equation (2) and then evaluating the integrals:

Imχr (q, ω) = 2 Imχ⊥(q, ω)/3 (10)

with

Imχ⊥(q, ω) = (π/2)ωχ⊥(q) [δ(ω − ω(q)) + δ(ω + ω(q))] (11)

and the spin-wave propagation frequency ω(q) given by [10]

h̄ω(q) = gµBM(T, H )χ−1
⊥ (q) = gµB M(T, H )(χ−1

⊥ (0) + c⊥q2 + · · ·)
= gµB H + D(T, H )q2 + · · · (12)

or, in reduced units, by

ω(q) = mrχ
−1
⊥ (q) = hr + dSWq2 + · · · (13)

where mr = gµBM/Ed
F , hr = gµB H/Ed

F, dSW = D(kd
F )

2/Ed
F = mr c⊥, c⊥ ≡ c⊥(kd

F)
2,

χ−1
⊥ = H/M(T, H ), the effective field H is the external magnetic field, Hext, corrected for the

demagnetizing field, Hdem, and other anisotropy fields, HA, i.e.,

H = Hext − Hdem + HA = Hext − 4πN M(T, Hext) + HA,

N is the demagnetizing factor, g is the Landé splitting factor, and D(T, H ) = gµBM(T, H )c⊥
is the spin-wave stiffness. Combining equations (2), (3), (10), (11) and (13) yields the result

r(T, hr ) =
(

2πmr

3T

) ∫ q0

0
dq q3 ω(q)eω(q)/T

(eω(q)/T − 1)2
(14)
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where the upper limit 2ks
F/kd

F for the integral over q has been replaced by the upper cut-off
wavevector q0 for the spin-wave modes. In the absence of the external magnetic field (i.e.,
when H = hr = 0), the spin-wave excitations are confined to a very narrow region around
q = 0 of the Brillouin zone in WI ferromagnets so that the upper limit q0 can be taken to be
∞ without sacrificing accuracy. When H = hr = 0, ω(q) = dSWq2 and the definite integral
in equation (14) can be solved, using the standard result∫ ∞

0
dx xnex(ex − 1)−2 = �(n + 1)ζ(n),

to finally arrive at the following expression for the spin-wave contribution to the zero-field
resistivity in usual units:

ρSW(T, H = 0) = π

3
ρ0�(3)ζ(2)

(
gµBM

h̄

) (
kBT

D

)2

(15)

with

ρ0 = 3

4

( m

ne2

)
�2

s−d N(Ed
F )N(E

s
F)(k

s
F)

−4. (16)

In the presence of the magnetic field (H ), the spin-wave excitations get progressively
suppressed by the field because H causes a gap in the spin-wave spectrum in accordance with
equation (12), and increases the spin-wave cut-off wavevector q0. Consequently, equation (14)
assumes the form

r(T, hr ) = π

3
mr

(
T

dSW

)2 [∫ ω(q0)/T

ω(0)/T
dx

x2ex

(ex − 1)2
−

(
hr

T

) ∫ ω(q0)/T

ω(0)/T
dx

xex

(ex − 1)2

]
(17)

where ω(q0) = ω(q = q0) = hr + dSWq2
0 and ω(0) = ω(q = 0) = hr . If the very

weak dependence of q0 on H is neglected and the upper limit of the integrals appearing in
equation (17) is replaced by ∞ (i.e., setω(q0)/T = ∞), the final expressions for the spin-wave
contribution to the negative magnetoresistance, (�ρ/ρ)SW, at low temperatures are given by
(
�ρ

ρ

)

SW

= 1 − ρSW(T, H )

ρSW(T, H = 0)
= −[�(3)ζ(2)]−1

[
h ln(eh − 1) + 2

∞∑
n=1

(−1)n(eh − 1)n

n2

]

(18)

for (eh − 1) < 1, or equivalently, for h < 0.693 and(
�ρ

ρ

)

SW

= 1 − ρSW(T, H )

ρSW(T, H = 0)
= − [�(3)ζ(2)]−1

[
h ln(eh − 1)− {

ln(eh − 1)
}2

− 2
∞∑

n=1

(−1)n(eh − 1)−n

n2

]
(19)

for (eh − 1) > 1 or h > 0.693. Equations (18) and (19) quantify the suppression of spin
waves by field, and the consequent change in (�ρ/ρ)SW with field, at low and intermediate
fields (h < 0.693), and at high fields (h > 0.693), respectively. Since most of the suppression
occurs at fields h < 0.693, equation (18) is more relevant to the present study, which mainly
focuses on the suppression of low-lying magnetic excitations by field at moderate fields. The
variations of (�ρ/ρ)SW with field at different temperatures in the low-temperature region,
predicted by equation (18), are depicted by the continuous curves in figure 1. In order to make
these variations more transparent, the (eh−1) term, appearing in equation (18), is approximated
by h for h � 1 and only the first two (leading) terms in the sum over n are retained, with the
result that (

�ρ

ρ

)

SW

∼= 0.304

[
−h ln h + 2h − 1

2
h2

]
. (20)
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Figure 1. The theoretical variations of the spin-wave contribution to negative magnetoresistance,
(�ρ/ρ)SW, with magnetic field at different temperatures in the low-temperature region predicted by
equations (18) (continuous curves) and (20) (dashed curves) of the text as well as by equation (A.6)
(dotted curves) of the appendix. Note that to facilitate a direct comparison between the two types
of variations, the (�ρ/ρ)SW data computed from equation (A.6) have been multiplied by 0.5.

The theoretical curves, based on equations (18) (continuous curves) and (20) (dashed curves)
shown in figure 1, reveal the following.

(i) For a given field strength, the suppression of spin waves by the magnetic field, as reflected
in (�ρ/ρ)SW, decreases with increasing temperature.

(ii) At a given temperature, the suppression of spin waves at low and intermediate fields
is predominantly due to the first (−h ln h) and second (2h) terms in equation (20),
respectively; the tendency of (�ρ/ρ)SW to saturate at high fields is a consequence of
the competition between the third term and the first two terms in equation (20).

Note that equation (18) is not valid when h > 0.693 and that the limiting value (0.5) of
(�ρ/ρ)SW is reached when the reduced field approaches its highest allowed value of h = 0.693.
An alternative approach to arrive at a result (equation (A.6)) equivalent to equation (18) employs
the classical approximation in conjunction with the temperature- and field-dependent spin-wave
cut-off wavevector, as elucidated in the appendix. The field variations of (�ρ/ρ)SW at different
temperatures predicted by equation (A.6) (represented by the dotted curves) are compared
with those yielded by equation (18) in figure 1. Compared to equation (18), equation (A.6)
overestimates the magnitude of (�ρ/ρ)SW at any given value of H by nearly a factor of
two. The field variations predicted by equation (18), or even equation (20), are in better
accord with the experiment [21, 22]. The formalism leading to equation (A.6), when used to
derive the spin-wave contribution to the ‘in-field’ magnetization (for details, see the appendix),
yields the H 1/2 law for the suppression of spin waves by H at low and moderate fields for
weak itinerant-electron ferromagnets. This prediction is in agreement with the experimental
observations [14, 16, 19]. Interestingly, the same result (i.e., the H 1/2 law) was derived long
ago by Holstein and Primakoff [20] in the case of localized-moment ferromagnets.

2.1.2. Low and intermediate temperatures. At intermediate temperatures but still well below
TC, the spin-fluctuation contribution to the magnetoresistance becomes more important than
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the spin-wave contribution. For temperatures below TC, the longitudinal and transverse
spin-fluctuation contributions to the resistivity, and hence to the magnetoresistance, have
to be treated differently since the imaginary part of the dynamical wavevector-dependent
susceptibility has different lower bounds (q⊥ = q0, ω = 0) and (q‖ = 0, ω = 0) in the (q, ω)-
plane for the transverse and longitudinal fluctuations (as already elucidated in the opening
paragraph under section 2.1.1). From equations (2)–(5), the spin-fluctuation contribution is
given by

rν(T, hr ) =
(

2γν
T

) ∫ qc

qν

dq q4
∫ ∞

0
dω

eω/T

(eω/T − 1)2
ω2

ω2 + �2
ν (q)

= γν

∫ qc

qν

dq q4

[
−1 − 1

2Z
+ Zψ ′(Z)

]
(21)

with qc ≡ 2ks
F/kd

F , Z = �ν(q)/2πT and qν = q‖ or q⊥; the integral over ω has been solved
using the standard result

∫ ∞

0
dx

ex

(ex − 1)2
x2

x2 + (2π Z)2
= 1

2

[
−1 − 1

2Z
+ Zψ ′(Z)

]

where ψ ′(Z) is the trigamma function. At low and intermediate temperatures, Z is large and
the function ψ ′(Z) can be expanded in powers of (1/Z) with the result

ψ ′(Z) ∼= (1/Z) + (1/2Z 2) + (1/6Z 3)− (1/30Z 5) + · · · .
This series converges quickly for large Z and justifies retaining terms in this expansion up to
Z−3 only, so that

[−1 − (1/2Z) + Zψ ′(Z)
] ∼= (1/6Z 2)

and equation (21) reduces to

rν(T, hr ) = 2π2

3

(
γν

�2
ν

)
T 2

∫ qc

qν

q2 dq

(κ2
ν + q2)2

. (22)

Now that the spin fluctuations occupy only a small region of the Brillouin zone around q⊥ = q0

or q‖ = 0 at low and intermediate temperatures, the upper limit of the integration over q can be
taken to be qc

∼= ∞ without a significant loss of accuracy. Solving the integral in equation (22)
and expressing all the quantities in the normal units leads finally to the result

ρ⊥(T, H ) = 2π2

9
γ⊥

(
ρ0

q0

) (
kBT

h̄�⊥

)2 {(
q0

κ⊥

) [
π

2
− tan−1

(
q0

κ⊥

)
+

(q0/κ⊥)
1 + (q0/κ⊥)2

]}
(23)

and

ρ‖(T, H ) = π3

18
γ‖

(
ρ0

q0

) (
kBT

h̄�‖

)2 {
q0

κ‖

}
. (24)

In the above expressions, the field dependence basically originates from the inverse spin
correlation length κν (where the subscript ν denotes the transverse ⊥ or longitudinal ‖ case)
which is related to the temperature- and field-dependent transverse (longitudinal) susceptibility
χ⊥(0) = M/H (χ‖(0) = ∂M/∂H ) as κ2

ν = [cνχν(0)]
−1, where M ≡ M(T, H ). Note that this

relation is an alternative form of equation (8). To calculateχ‖(0) andχ⊥(0), the following self-
consistent approach has been adopted. We start with the magnetic equation of state [10, 13]

H = AM(T, H ) + b[M(T, H )]3 (25)
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with

A = a(T ) + b(3〈m2
‖〉 + 2〈m2

⊥〉), (26)

which, for H = 0 and T < TC, yields the spontaneous magnetization, M0 ≡ M(T, H = 0),
as

M0 = (−A(T )/b)1/2. (27)

For T < TC, A is negative and M(0) is finite. In equation (26), 〈m2
‖〉 and 〈m2

⊥〉 are the thermal
variances of the local magnetization parallel and perpendicular to the average magnetization
M , respectively, and the detailed expressions for the coefficients a(T ) and b are given in [13].
From the magnetic equation of state (MES), equation (25), it immediately follows that

χ−1
⊥ (T, H ) = H

M
= A + bM2 = b(M2 − M2

0 ) (28)

χ−1
⊥ (T, H = 0) = 0 (29)

χ−1
‖ (T, H ) = ∂H

∂M
= A + 3bM2 = b(3M2 − M2

0 ) (30)

χ−1
‖ (T, H = 0) = 2bM2

0 . (31)

The total spin-fluctuation (SF) contribution to the ‘in-field’ and ‘zero-field’ resistivity is the
sum of the longitudinal and transverse contributions, i.e.,

ρ(T, H ) = ρ‖(T, H ) + ρ⊥(T, H )

= π2

9
ρ0γ

(
kBT

h̄�

)2

π

2

√
c

b

1√
3M2 − M2

0

+
2

q0

{
x

(π
2

− tan−1 x +
x

1 + x2

)}



(32)

with

x = q0

κ⊥
= q0

√
c

b

1√
M2 − M2

0

(33)

and

ρ(T, H = 0) = ρ‖(T, H = 0) + ρ⊥(T, H = 0) = π2

9
ρ0γ

(
kBT

h̄�

)2 [
π

2
√

2

√
c

b

1

M0
+

2

q0

]
.

(34)

In equations (32)–(34), we have set c‖ = c⊥, γ‖ = γ⊥ and hence �‖ = �⊥. The negative
magnetoresistance at low and intermediate temperatures is thus given by
(
�ρ

ρ

)

SF

= 1 − ρ(T, H )

ρ(T, H = 0)
= 1 −

[
π

2
√

2

√
c

b
M−1

0 +
2

q0

]−1

×

π

2

√
c

b

1√
3M2 − M2

0

+
2

q0

{
x

(
π

2
− tan−1 x +

x

1 + x2

)}
 . (35)

In order to facilitate a direct comparison with the experiments, an attempt has been made to
bring out the field dependence of the negative magnetoresistance clearly. For weak itinerant-
electron ferromagnets, the quantity (q0/κ⊥) is greater than unity. Consequently, the function
tan−1(x) in equation (23) can be expanded as tan−1(x) = (π/2)−(1/x)+(1/3x3)−(1/5x5)+
(1/7x7)− · · ·. Retaining terms up to x−5 only in this expansion, equation (23) reduces to

ρ⊥(T, H ) = ρ⊥(T, H = 0)
[
1 − 2

3 a⊥H + 3
5 a2

⊥H 2 − · · ·] (36)



The magnetoresistance of weak itinerant-electron ferromagnets 5603

with

ρ⊥(T, H = 0) =
(

2π

3

)2

γ⊥
(
ρ0

q0

)(
kBT

h̄�⊥

)2

(37)

and

a⊥ = 1

q2
0 c⊥M

. (38)

For fields in the vicinity of H = 0, the magnetization at a given temperature can be expanded
in a power series (Maclaurin’s series) in H about M(0):

M(H ) = M(0) + H M ′(0) +
H 2

2!
M ′′(0) +

H 3

3!
M ′′′(0) + · · · . (39)

Obtaining the first-, second- and third-order derivatives of magnetization with respect to field,
evaluated at H = 0, i.e., M ′(0), M ′′(0) and M ′′′(0), from the MES, equation (25), and
substituting in equation (39) yields the result

M(T, H ) = M(T, H = 0)−
(

1

2A

)
H +

3

8
M(T, H = 0)

(
b

A3

)
H 2 +

1

2

(
b

A4

)
H 3 − · · · .

(40)

Recalling that χ‖(T, H ) ≡ χ‖(0) = ∂M(T, H )/∂H , χ‖(T, H ) can be calculated from
equation (40) with the result

χ‖(T, H ) = −
(

1

2A

)
+

3

4
M(T, H = 0)

(
b

A3

)
H +

3

2

(
b

A4

)
H 2 − · · · .

Combining this result with the relation κ2
‖ = [c‖χ‖(0)]−1 and equation (24), we obtain the

longitudinal spin-fluctuation contribution to the ‘in-field’ resistivity as

ρ‖(T, H ) = ρ‖(T, H = 0)
[
1 − 3

2 a‖ H + 39
8 a2

‖ H 2 − · · ·] (41)

with

ρ‖(T, H = 0) = π3

18
ρ0γ‖

(
c‖

−2A

)1/2 (
kBT

h̄�‖

)2

(42)

and

a‖ = 1

2bM3
0

. (43)

Though the dependence of ρ‖(T, H ) on field is explicit in equation (41), this dependence is
valid only for fields close to H = 0. By contrast, the expression for ρ‖(T, H ) in equation (32)
holds over a wide range of fields, where the MES is obeyed. Thus the approach leading to
equation (41) is abandoned and the earlier expression for ρ‖(T, H ) is retained while the new
expressions forρ⊥(T, H ) andρ⊥(T, H = 0), i.e., equations (36) and (37), replace the previous
ones in equations (32) and (34). With this change, the negative magnetoresistance at low and
intermediate temperatures assumes the form
(
�ρ

ρ

)

SF

= 1 −
[
π

2
√

2

√
c

b
M−1

0 +
4

q0

]−1 [
π

2

√
c

b

(
3M2 − M2

0

)−1/2

+
4

q0

(
1 − 2

3
a⊥H +

3

5
a2

⊥H 2

)]
. (44)

In the derivation leading to equation (44), the lower cut-off wavevector q0 and the longitudinal
and transverse thermal variances 〈m2

‖〉 and 〈m2
⊥〉 are treated as field-independent quantities.
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Figure 2. Variations of the spin-fluctuation contribution to negative magnetoresistance, (�ρ/ρ)SF,
with magnetic field at T = 0.4TC, 0.5TC and 0.6TC for Ni3Al yielded by equation (35) (continuous
curves) and (44) (dashed curves) when the reported [10, 13, 14] values of various physical
parameters, appearing in these equations, are used.

Generally, this is not true; while q0 increases slightly with H , 〈m2
‖〉 and 〈m2

⊥〉 get suppressed
by H [13]. However, in the temperature range under consideration, the variations of these
quantities with field are not appreciable and hence the assumption of neglecting their field
dependences is not too drastic. Using the experimental values for various parameters, appearing
in equations (35) and (44), for the weak itinerant-electron ferromagnet Ni3Al from the
literature [10, 13, 14], the field variations of (�ρ/ρ)SF at fixed temperatures 0.4TC, 0.5TC

and 0.6TC predicted for Ni3Al by the expressions (35) and (44) are depicted in figure 2
by the continuous and dashed curves, respectively. The field variations of the negative
magnetoresistance, so obtained, present the following salient features.

(i) At a fixed temperature, compared to the exact expression (35), the approximate
expression (44) progressively overestimates the value of (�ρ/ρ)SF with increasing field
so much so that (�ρ/ρ)SF increases steeply with no saturation in sight even at the highest
field of 80 kOe. The theoretical field variations of (�ρ/ρ)SF, based on equation (35), are
in better accord with the experiment [21, 22].

(ii) In agreement with the experimental observations [22], at a given field, (�ρ/ρ)SF increases
with temperature.

(iii) At low fields, the suppression of longitudinal and transverse spin fluctuations by the field,
as reflected in (�ρ/ρ)SF, occurs in accordance with the power law ∼H and the linear
field dependence dominatesover the quadratic one.

(iv) At intermediate and not too high fields, the term in equation (44), varying as ∼H 2,
progressively slows down the suppression of both longitudinal and transverse spin
fluctuations with increasing field so much so that (�ρ/ρ)SF tends to saturate at high
fields.
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2.1.3. Temperatures around TC but outside the critical region. The simplification resulting
from the expansion of the trigamma function, appearing in equation (21), at moderate
temperatures is not applicable at temperatures just outside the critical region but on either side of
the Curie point, TC (henceforth referred to as ‘for temperatures close to TC’, for brevity), where
such an expansion is no longer valid. However, equation (21) is amenable to an analytical
solution if the so-called classical approximation is made. In this approximation, the spin-
fluctuation cut-off wavevector qc is chosen such that the spatially varying local magnetization,
m(r), is classical, which, in turn, implies that each local spin-density mode mν(q) for q < qc is
thermally excited such that the part of the integrand in equation (2) involving the Bose function
n(ω), i.e., n(ω)[n(ω) + 1] can be approximated by (T/ω)2 − (1/12) for those values of ω for
which Im χr (q, ω) makes an appreciable contribution to the integral over ω in equation (2)
and hence in equation (21). With this approximation, equation (21) can be cast into the form

rν(T, hr ) =
(

2γν
T

) ∫ qνc

qν

dq q4

[
T 2

∫ ∞

0

dω

ω2 + �2
ν (q)

− 1

12

∫ ∞

0

ω2dω

ω2 + �2
ν (q)

]
(45)

where qνc depends on both temperature and field [13]. At temperatures close to TC, spin-
fluctuation modes with q � q0 significantly contribute to r(T, hr ) so that the lower bound
qν of the integral over q can be set equal to zero for transverse spin fluctuations as well, i.e.,
q⊥ = q‖ = 0. Making use of the reduced variable x = q/qνc , equation (45) reduces to

rν(T, hr ) = π

2
γν

(
T

�ν

)
(qνc )

2
[
1 − y2

ν

{
ln(1 + y2

ν )− ln y2
ν

}]

+
π

72
γν

(
�ν

T

)
(qνc )

8

(
3

4
+ y2

ν

)
− 1

30
γν(q

ν
c )

5 (46)

where yν = κν/qνc .
The dependence of resistivity on magnetic field, implicit in the above expression, basically

results from the variations of κν and qνc (and hence of yν) with field. The final expression for the
spin-fluctuation contribution to the negative magnetoresistance, given below, is obtained by
expressing the resistivity in normal units, employing the relations [13] κ2

ν = [cνχν(0)]−1 and

qνc (T, H ) ∼=
(

kBT

h̄�ν

)1/3

(1 − Zν) (47)

with

Zν = 1

3cν

(
h̄�ν
kBT

)2/3

χ−1
ν (0) = 1

3

(
h̄�ν
kBT

)2/3

κ2
ν (48)

and taking cognizance of the fact that the expressions (28)–(31) for the ‘zero-field’ and ‘in-
field’ susceptibilities for the longitudinal and transverse spin fluctuations are valid over a much
wider field range spanning lower and lower fields as the temperature approaches TC from either
side (below or above). The expression in question is(

�ρ

ρ

)

SF
= 1 − ρSF(T, H )

ρSF(T, H = 0)
(49)

with

ρSF(T, H ) = π

6
γρ0

(
kBT

h̄�

)5/3 [
(1 − Z‖)2[1 − y2

‖ {ln(1 + y2
‖)− ln y2

‖ }]

+ 2(1 − Z⊥)2[1 − y2
⊥{ln(1 + y2

⊥)− ln y2
⊥}] − 1

15π

[
(1 − Z‖)5 + 2(1 − Z⊥)5

]

+ 1
36

{
(1 − Z‖)8

(
3
4 + y2

‖
)

+ 2(1 − Z⊥)8
(

3
4 + y2

⊥
)}]

(50)
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ρSF(T, H = 0) = π

6
γρ0

(
kBT

h̄�

)5/3 [
(1 − Z0

‖)
2[1 − y02

‖ {ln(1 + y02

‖ )− ln y02

‖ }] + 2

− 1

15π

[
(1 − Z0

‖)
5 + 2

]
+

1

36

{
(1 − Z0

‖)
8

(
3

4
+ y02

‖

)
+

3

2

}]
(51)

Z‖ = 1

3

(
b

c

) (
h̄�

kBT

)2/3 (
3M2 − M2

0

)
(52)

Z 0
‖ = 2

3

(
b

c

) (
h̄�

kBT

)2/3

M2
0 (53)

y2
‖ =

(
b

c

) (
h̄�

kBT

)2/3 (
1 − Z‖

)−2 (
3M2 − M2

0

)
(54)

Z⊥ = 1

3

(
b

c

) (
h̄�

kBT

)2/3 (
M2 − M2

0

) = 1

3c

(
h̄�

kBT

)2/3 (
H

M

)
(55)

y2
⊥ =

(
b

c

) (
h̄�

kBT

)2/3

(1 − Z⊥)−2 (
M2 − M2

0

) = 1

c

(
h̄�

kBT

)2/3

(1 − Z⊥)−2

(
H

M

)
(56)

Z 0
⊥ = y02

⊥ = 0. (57)

In equations (50)–(57), c‖ = c⊥ ≡ c, γ‖ = γ⊥ ≡ γ and hence �‖ = �⊥ ≡ �.
The field dependence of the negative magnetoresistance can be brought out explicitly as

follows. Considering that y < 1 at temperatures on either side of TC but not very far from it
and in external magnetic fields of moderate strength (note that χ−1

ν (0) = 0, and hence yν = 0,
at T = TC in the absence of an external magnetic field), the logarithmic functions appearing
in equations (50) and (51) can be expanded in powers of y2 with the result that the negative
magnetoresistance still has the same form as equation (49) but with

ρSF(T, H ) = π

2
ηρ0γ

(
kBT

h̄�

)5/3 [
1 − α

{
b

(
3M2 − M2

0

)
+ 2

(
H

M

)}

+ β

{
b2

(
3M2 − M2

0

)2
+ 2

(
H

M

)2}]
(58)

ρSF(T, H = 0) = π

2
ηρ0γ

(
kBT

h̄�

)5/3 [
1 − 2αbM2

0 + 4βb2M4
0

]
(59)

η = 1 − 1

15π
+

1

48
(60)

α = 1

27ηc

(
25 − 1

π

) (
h̄�

kBT

)2/3

(61)

β = 1

81ηc2

(
337

4
− 2

π

)(
h̄�

kBT

)4/3

. (62)

Inserting the values of the parameters reported [10, 13, 14] for Ni3Al in equations (49)–(62),
equation (49) yields the variations of (�ρ/ρ)SF with the magnetic field at fixed temperatures
0.8TC and 0.9TC when either the expressions (50) and (51) (continuous curves in figure 3)
or (58) and (59) (dashed curves in figure 3) are used for ρSF(T, H ) and ρSF(T, H = 0).
Compared to the expressions (50) and (51), the approximate expressions (58) and (59) yield
consistently lower values for (�ρ/ρ)SF at different fields at a given temperature but preserve the
trend that, at a given field, (�ρ/ρ)SF increases with temperature. The theoretically predicted
field variations at a given temperature as well as the temperature variations at a given value of
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Figure 3. Negative magnetoresistance, due to thermally excited spin-density fluctuations,
(�ρ/ρ)SF, as a function of magnetic field at T = 0.8TC and 0.9TC for Ni3Al predicted by
equation (49) combined with either the expressions (50) and (51) (continuous curves) or (58)
and (59) (dashed curves), when the reported [10, 13, 14] values of various physical parameters,
appearing in these equations, are used.

H conform well with the experiments [21, 22]. From equation (44) and the expression (49)
with ρSF(T, H ) and ρSF(T, H = 0) given by equations (58) and (59), it is evident that, but
for the difference in the actual structure of the coefficients of the H and H 2 terms, the field
dependence of the spin-fluctuation contribution to magnetoresistance is of similar form for
temperatures up to the Curie temperature.

3. Summary and conclusions

With a view to investigating the effect of magnetic field, H , on the low-lying magnetic
excitations in weak itinerant-electron (WI) ferromagnets, the contributions to the electrical
resistivity in the absence and presence of H , i.e., ρ(T, H = 0) and ρ(T, H ), arising from the
thermally excited propagating transverse spin fluctuations (spin waves) at low temperatures
and non-propagating exchange-enhanced longitudinaland transverse spin-density fluctuations
at intermediate temperatures and for temperatures close to the Curie point, TC, have been
calculated using a self-consistent approach that completely dispenses with the unrealistic
electron gas approximation used in earlier theoretical treatments [1, 5, 6]. A close scrutiny of
the expressions (15), (18), (20), (32)–(38), (44) and (49)–(62),so derived, reveals the following.

(i) The effect of magnetic field is to leave the zero-field functional form of the temperature
dependence of resistivity unaltered but give rise to field-dependent corrections to the zero-
field behaviour. Apart from a slight difference in the numerical factors, the expressions
obtained in this work for the contributions to the zero-field resistivity, ρ(T, H = 0),
due to spin waves, ρSW(T, H = 0), at low temperatures, equation (15), transverse
and longitudinal spin-density fluctuations, ρ⊥(T, H = 0) and ρ‖(T, H = 0), at low
and intermediate temperatures, equations (37) and (42), and spin-density fluctuations,
ρSF(T, H = 0), for temperatures close to TC, equation (59), are the same as those derived
earlier by Ueda and Moriya [5] based on the self-consistently renormalized (SCR) spin-
fluctuation theory.
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(ii) By contrast, the corresponding expressions for the negative magnetoresistance, i.e.,
equations (18)–(20), (36), (41), (44) and (59), have basically the same general form
(�ρ/ρ) = 1 − [ρ(T, H )/ρ(T, H = 0)] ∼= a H − bH 2. Despite the similarity in the
functional form, there are subtle distinctions in the way the field suppresses different
types of magnetic excitations, as inferred from the magnetoresistance, primarily because
the actual structure of the coefficients a and b depends on the nature of the spin-fluctuation
modes (propagating or non-propagating, transverse or longitudinal) and the range of
temperatures under consideration. This point is elucidated further in the following text.

In the expression for the spin-wave (SW) contribution, (�ρ/ρ)SW, at low temperatures,
equations (18) and (20), the coefficients a and b are proportional to 1/T and 1/T 2, respectively,
so that for a given field strength, the suppression of spin waves by the field progressively
weakens with increasing temperature, whereas for a given temperature, it increases linearly
with H at low fields but becomes nonlinear at intermediate and high fields where the H 2 term
competes with the term linear in H . At intermediate temperatures, the coefficients a and b in
equations (36), (41) and (44) have a negligibly weak dependence on temperature and field with
the result that at low fields, the suppression of transverse and longitudinal spin fluctuations
by the field follows the power law ∼H . However, at intermediate and not too high fields,
according to equation (44), the second term in the expression for (�ρ/ρ)⊥, equation (36),
varying as ∼H 2, progressively slows down the suppression of both transverse and longitudinal
spin fluctuations with increasing field so much so that the total spin-fluctuation contribution,
(�ρ/ρ)SF, tends to saturate at high fields. At this stage, it is interesting to note that a fairly
complicated expression for (�ρ/ρ)SF at low temperatures, derived by Ueda [6] using the SCR
spin-fluctuation theory, also predicts a linear variation of (�ρ/ρ)SF with H at low fields but
the field dependence at intermediate and high fields is not as obvious as in equation (44). For
temperatures close to TC also, the coefficients a and b in equation (58) are weakly dependent
on temperature and field but both the modes of spin fluctuations get suppressed in accordance
with the power law ∼H at low fields and because of the presence of an additional term, varying
as H 2, the total spin-fluctuation contribution to negative magnetoresistance tends to saturate
at high fields.

The expressions for (�ρ/ρ)SW and (�ρ/ρ)SF obtained in this work are shown to permit
a quantitative determination of the suppression of spin waves and spin-density fluctuations by
the magnetic field in weakly ferromagnetic metals. Since the well-known physical quantities
such as g ∼= 2,µB and kB appear in the expression for (�ρ/ρ)SW, equation (18) or (20), besides
temperature and field, the theoretical T and H variations, predicted by equation (18) or (20) for
the suppression of spin waves by field, are amenable to a direct comparison with the observed
variations without any free adjustable parameters. By comparison, the coefficients of the H
and H 2 terms in the expressions for (�ρ/ρ)SF, i.e., in equation (44) and equation (49) combined
with equations (58) and (59), involve the band parameters cν and γν , which characterize the
static and dynamic properties of χν(q, ω), respectively. The parameters cν and γν can be
directly determined by measuring the Lorentzian linewidth �ν(q) = γνq(χ−1(q) + cνq2) of
Imχν(q, ω)/ω as a function of q at different but fixed temperatures below and above TC in
neutron scattering experiments. Alternatively, a direct measurement of magnetization and
spin-wave stiffness D = gµB Mc⊥ (by inelastic neutron scattering) yields c⊥. The values of
the band parameters cν and γν , so determined, are already available in the literature [1, 8, 10]
for the archetypal weak itinerant-electron ferromagnets Ni3Al, MnSi and ZrZn2. Therefore,
a quantitative comparison between theory and experiment for Ni3Al, in particular, has been
attempted by using the reported values of cν and γν and the magnetization data [10, 13, 14] in
the expressions (44) and (49)–(62) obtained in this work. A fairly good agreement between the
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theoretically predicted and experimentally observed [21, 22] temperature and field variations
of the negative magnetoresistance has been found. In those cases where such a comparison is
not possible because of the non-availability of the parameter values, cν and γν can be treated as
free fitting parameters while attempting a theoretical fit to the magnetoresistance data based on
the present calculations. At this stage, it should be emphasized that the calculations presented
in this work do not take into account the positive magnetoresistance contribution arising from
the Lorentz force experienced by the conduction electrons due to the simultaneous presence of
electrical and magnetic fields: this contribution is expected to become important particularly
at low temperatures.
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Appendix

In this appendix, we make use of the classical approximation together with a temperature-
and field-dependent spin-wave cut-off wavevector to derive analytical expressions for the
suppression of the spin-wave contribution to electrical resistivity and magnetization by
magnetic field for weak itinerant-electron ferromagnets.

In the presence of the magnetic field, the spin-wave cut-off wavevector q0 depends on both
the temperature (T ) and the field (H ). The variations of q0 with T and H can be estimated
from the condition

ω(q0)
∼= T . (A.1)

Combining equations (13) and (A.1) yields

q0(T, hr ) = ± [(T − hr )/dSW]1/2 . (A.2)

In the classical approximation, the exponential term ex in the Bose function n(ω) =
1/(eω(q)/T − 1) is expanded in powers of x . If, in this expansion, the terms up to x3 are
considered so that the part of the integrand in equation (2) involving the Bose function, i.e.,
n(ω)[n(ω) + 1] is approximated by

[T/ω(q)]2 − (1/12) + (13/12)[ω(q)/T ],

equation (14) reduces to

r(T, hr ) =
(

2πmr T

3dSW

) [∫ q0

0
q dq − hr

∫ q0

0

q dq

hr + dSWq2

]
−

(πmr

18T

) ∫ q0

0
q3ω(q) dq

+

(
13πmr

18T 2

) ∫ q0

0
q3[ω(q)]2 dq. (A.3)

Using the value of q0, given by equation (A.2), in the expression obtained after evaluating the
above integrals and transforming back to normal units, leads finally to

ρSW(T, H ) = ρSW(T, H = 0)[1 − 1.0615h − 0.0112h3 + 0.0726h4 + 0.8045h ln h] (A.4)
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with

ρSW(T, H = 0) = 0.4144πρ0

(
gµBM

h̄

) (
kBT

D

)2

(A.5)

and the reduced field h = (gµB H/kBT ). Alternatively, the spin-wave contribution to the
negative magnetoresistance at low temperatures is given by(
�ρ

ρ

)

SW
= 1 − ρSW(T, H )

ρSW(T, H = 0)
= 1.0615h + 0.0112h3 − 0.0726h4 − 0.8045h ln h.

(A.6)

This expression overestimates the absolute value of negative magnetoresistance obtained from
equation (18) by roughly a factor of two and leads to a faster saturation, as is evidenced
from figure 1, where the dotted and continuous curves depict the field variations predicted by
equations (A.6) and (18), respectively.

If instead of retaining the terms up to x3 in the expansion of the exponential term ex ,
appearing in the Bose function n(ω) = 1/(eω(q)/T − 1), the expansion is terminated at the
second term only (i.e., ex ∼= 1 + x) and the calculations leading to equation (A.6) are repeated,
we arrive at the result(

�ρ

ρ

)

SW

= 2

3

[
−h ln h + 2h − 1

2
h2

]
,

which has exactly the same form as equation (20) but overestimates the magnitude of (�ρ/ρ)SW

by nearly a factor of two.
Next, the same theoretical formalism as above is used to calculate the spin-wave

contribution to the magnetization at low temperatures. The thermal variances of local
magnetization 〈m2

‖〉 and 〈m2
⊥〉 parallel (‖) and perpendicular (⊥) to the average magnetization,

M , are related to the imaginary part of the dynamical wavevector-dependent susceptibility,
Imχν(q, ω), where ν is the polarization index ‖ or ⊥, through the well-known fluctuation-
dissipation relation [1, 3, 10, 13]:

〈m2
ν〉 = 8h̄

(2π)3

∫ ∞

0
q2dq

∫ ∞

0

dω

eh̄ω/kB T − 1
Imχν(q, ω). (A.7)

Using the expression for Imχ⊥(q, ω), given by equation (11), and the spin-wave dispersion
relation, equation (12), equation (A.7) can be put into the form

〈m2
⊥〉 = 2gµB M

(2π)2

∫ ∞

0

q2 dq

eh̄ω(q)/kB T − 1
. (A.8)

When H = 0, h̄ω(q) = Dq2 and the integral over q in equation (A.8) yields

〈m2
⊥〉 = ζ(3/2)gµBM(T, 0)

(
kBT

4πD

)3/2

. (A.9)

With the aid of the approximate form of the magnetic equation of state in the absence of
the magnetic field [13], i.e., M(T, 0)/M(0, 0) ∼= 1 − 〈m2

⊥〉/M2(0, 0), the expression for the
spin-wave contribution to spontaneous magnetization, equation (A.9), can be cast into the
well-known Bloch form

M(T, 0) = M(0, 0) − ζ(3/2)gµB

(
kBT

4πD

)3/2

. (A.10)

In the presence of an external magnetic field, equation (A.8) assumes the form

〈m2
⊥〉 = gµB M

(2π)2

(
kBT

D

)3/2 ∫ ∞

0

x1/2dx

ex+h − 1
,
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where x = Dq2/kBT and h = gµB H/kBT . The integral can be solved exactly to yield the
final result

M(T, H ) = M(0, 0)− gµB

(
kBT

4πD

)3/2

ζ(3/2, h)

= M(0, 0) − gµB

(
kBT

4πD

)3/2

[ζ(3/2)− 3.54h1/2 + 1.64h

− 0.104h2 + 0.004 25h3] (A.11)

with ζ(3/2) = 2.612.
We now make use of the classical approximation, i.e., approximate the Bose function

[eh̄ω(q)/kB T − 1]−1 by [kBT/h̄ω(q)] − (1/2)+ (1/12)[h̄ω(q)/kBT ] and replace the upper limit
(∞) of the integral over q by the spin-wave cut-off wavevector q0, which depends on the
temperature and field in accordance with the relation

q0(T, H ) = q0(T, H = 0) [1 − h]1/2 , (A.12)

where q0(T, H = 0) = (kBT/D)1/2. Note that equation (A.2), when expressed in usual units,
is nothing but equation (A.12). In the classical approximation, equation (A.8) assumes the
form

〈m2
⊥〉 = gµB M(T, H )

2π2

[∫ q0

0

kBT q2 dq

gµB H + Dq2
− 1

2

∫ q0

0
q2 dq +

1

12

∫ q0

0
q2

(
h̄ω(q)

kBT

)
dq

]

= gµB M(T, H )

2π2

(
kBT

D

) [
q0 −

(
gµB H

D

)1/2

tan−1

{
q0

(
gµB H

D

)−1/2
}]

+
gµBM(T, H )

12π2

(
kBT

D

)3/2

(1 − h)3/2
[

h

6
− 1 +

1

10
(1 − h)

]
. (A.13)

At weak and moderate fields and for typical values of other quantities appearing in the
argument x of the function tan−1(x), x > 1. Consequently, tan−1(x) can be expanded as
tan−1(x) ∼= (π/2) − (1/x) + (1/3x3) − (1/5x5) + · · · and equation (A.13) finally yields the
result

〈m2
⊥〉 ∼= 4

π1/2
gµB M(T, H )

(
kBT

4πD

)3/2 [
51

60
− π

2
h1/2 +

53

72
h − 1

32
h2 +

7

960
h3

]
. (A.14)

At low temperatures and moderate fields, the magnetic equation of state [13]
[

M(T, H )

M(0, 0)

]2

= 1 −
(

T

T S
C

)2

− 3〈m2
‖〉 + 2〈m2

⊥〉
M2(0, 0)

+ 2χ(0, 0)
H

M(T, H )
, (A.15)

where T S
C is the Stoner Curie temperature (which is usually extremely high) and χ(0, 0) is

the zero-field differential susceptibility at 0 K (typically ≈10−3 for weak itinerant-electron
ferromagnets), can be approximated by the expression

M(T, H )

M(0, 0)
∼= 1 − 〈m2

⊥〉
M2(0, 0)

. (A.16)

Combining equations (A.14) and (A.16), we finally obtain

M(T, H ) ∼= M(0, 0)− gµB

(
kBT

4πD

)3/2

[1.918 − 3.545h1/2

+ 1.661h − 0.071h2 + 0.0165h3]. (A.17)
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A comparison between equations (A.11) and (A.17) asserts that the expression (A.17), which
makes use of the classical approximation as well as the temperature- and field-dependent spin-
wave cut-off wavevector, provides a reasonably accurate description of the suppression of
the spin-wave contribution to the magnetization by magnetic field in weak itinerant-electron
ferromagnets. In conformity with the experimental observations [14, 16, 19] made on the
weakly ferromagnetic metallic alloys Ni75Al25 and Ni75−x Fex Al25, the expression (A.17) yields
the H 1/2 law for the suppression of spin waves by low and moderate fields in weak itinerant-
electron ferromagnets, as reflected in the spin-wave contribution to the magnetization.
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